EPOS study group. European Prospective Osteoporosis Study group. Erastin order Osteoporos Int 11:248–254PubMedCrossRef 36. Honkanen K, Honkanen R, Heikkinen L, Kroger H, Saarikoski S (1999) Validity of self-reports of fractures in perimenopausal women. Am J Epidemiol 150:511–516PubMed”
“Introduction Bones are subjected to a variety of mechanical loads
during daily activities. In the nineteenth century, YAP-TEAD Inhibitor 1 Julius Wolff proposed that bones adapt their mass and 3D structure to the loading conditions in order to optimize their load-bearing capacity, and that this process is driven by mechanical stress [1]. For the past centuries, an increasing number of theoretical and experimental results reveal that osteocytes are the pivotal cells orchestrating this biomechanical regulation of bone mass and structure, which is accomplished
by the process of bone remodeling [2–5] Osteocytes are terminally differentiated cells of the osteogenic lineage that are derived from mesenchymal precursor cells. A number of molecules have been identified as important markers of osteocytes, VX-689 solubility dmso such as matrix extracellular phosphoglycoprotein [6] sclerostin [7], dentin matrix protein-1 [8], and phex protein [8]. The osteocytes are the most abundant cells in adult bone and are constantly spaced throughout the mineralized matrix. Mature osteocytes have a characteristic dendritic cell shape, with processes radiating from the cell body through the canaliculi in different directions. These processes form an intercellular network through gap and adherent junctions with surrounding osteocytes, the cells lining the bone surface and bone marrow. Through this unique 3D network, osteocytes are anatomically placed in a prime position Ribonucleotide reductase not only to sense deformations driven by stresses placed upon bone, but also to respond with passage of signals to the neighboring cells [9]. For more than a decade now, it is known that the osteocytes are very sensitive to stress applied to intact bone tissue [10–16]. Computer simulation models have shown that mechanosensors
lying at the surface of bone, as osteoblasts and bone lining cells do, would be less sensitive to changes in the loading pattern than the osteocytes, lying within the calcified matrix [3]. Interestingly, targeted ablation of osteocytes in mice disturbs the adaptation of bone to mechanical loading [16]. Osteocytes as key players in the process of bone mechanotransduction It is currently believed that when bones are loaded, the resulting deformation will drive the thin layer of interstitial fluid surrounding the network of osteocytes to flow from regions under high pressure to regions under low pressure [17, 18]. This flow of fluid is sensed by the osteocytes which in turn produce signaling molecules that can regulate bone resorption through the osteoclasts, and bone formation through the osteoblasts, leading to adequate bone remodeling [17, 18].