CD4 binding facilitates viral attachment and mediates conformatio

CD4 binding facilitates viral attachment and mediates conformational changes in gp120 that allow a high-affinity click here interaction with the respective chemokine receptor.

HSCs express both functional CXCR49 and CCR5.8 Therefore, we examined whether HSCs express CD4. FACS analysis revealed that 4% of passage #3 HSCs express CD4 (data not shown). Because CD4 receptors can be disrupted by trypsinization, immunofluorescent staining for CD4 on primary HSCs was performed (Fig. 3A). Although a subset of primary HSCs expressed CD4, the expression level was low. To determine whether HIV entry into HSCs is CD4- and/or CXCR4-dependent, primary HSCs were preincubated with anti-CD4, anti-CXCR4, or isotype control, challenged with HIV-IIIB (X4-tropic), and ELISA http://www.selleckchem.com/products/LBH-589.html for p24 performed on culture supernatants (Fig. 3B). Neither blocking antibody inhibited HIV infection of HSCs. Efficacy of blocking antibodies was simultaneously confirmed in

primary CD4 cells where HIV infection was inhibited by both antibodies (Fig. 3C). As additional confirmation, HSCs were incubated with anti-CD4 and anti-CXCR4 prior to challenge with HIV-GFP and FACS analysis (Fig. 3D). Similar to p24 results, GFP expression was not significantly blocked by anti-CXCR4 or anti-CD4 antibodies. Whereas baseline efficiency of viral entry by R5-tropic virus (HIV-BaL) into HSCs was low, infection was not blocked using CCR5 blocking antibodies (data not shown). Taken together, these results indicate that the major pathway of viral entry into HSCs is independent of CD4 and chemokine Etofibrate coreceptor binding. Although alternative HIV receptors such as C-type lectins have been shown to mediate HIV entry into dendritic cells (DCs)14 and astrocytes,15

this mechanism of entry will have to be further explored for HSCs. To determine whether HSCs can produce infectious virus, culture supernatants from HSCs previously infected with HIV-IIIB were incubated with primary CD4 lymphocytes and TZM cells. There was no detectable p24 in culture supernatant from CD4 cells (Fig. 4A) or luciferase activity in TZM cells (Fig. 4B) exposed to culture supernatants from HIV-infected HSCs, respectively. In contrast, both purified HIV as well as culture supernatants derived from primary CD4 lymphocytes previously infected with HIV led to infection of both CD4 cells as indicated by p24 ELISA and luciferase activity for TZM cells (Fig. 4A). These findings indicate that most of the viral particles released into culture supernatants from HSCs are noninfectious. Transmission of HIV through points of cell contact has been demonstrated between DCs and T cells16 as well as between T cells.17 Because HSCs share features with DCs,18, 19 we examined whether HSCs could transfer infectious virus to lymphocytes in a coculture system.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>