The encapsulation efficiency was 99 1 +/- 1 0%, and 1 7 +/- 0 2%

The encapsulation efficiency was 99.1 +/- 1.0%, and 1.7 +/- 0.2% of paclitaxel was crystallized after 48 h. The relative oral bioavailability of paclitaxel-loaded nanosponges was 256. After oral administration of paclitaxel-loaded PLN, the area under the plasma concentration time curve was significantly increased (similar to 3-fold) in comparison to the control group (p < 0.05). The results indicated that PLN provided a promising new formulation to enhance the oral bioavailability of paclitaxel while avoiding the use of cremophore El: Ethanol in Taxol (R).”
“Withdrawal from daily cocaine administration causes an increase in actin selleck screening library cycling and increases spine head diameter

in medium spiny neurons from the core of the nucleus accumbens. In order to determine if these two effects of cocaine are mechanistically linked, after 3 weeks of withdrawal from 1 week of daily cocaine treatments, we microinjected latrunculin

into the accumbens to inhibit actin polymerization and prevent actin cycling. In cocaine-treated animals, latrunculin-reduced dendritic spine density and decreased the levels of F-actin and PSD-95 in postsynaptic density subfractions. In contrast, latrunculin did not affect spine density or protein levels in saline-treated AS1842856 mouse subjects. Cocaine withdrawn animals show an increase in spine head diameter 45 min after an acute injection of cocaine, and latrunculin abolished the ability of acute cocaine to increase spine head diameter and simultaneously inhibited the sensitized behavioral response. In contrast, latrunculin had no effect in control animals on the acute locomotor response to cocaine. Altogether, these data support previous findings that withdrawal from cocaine is associated with increased actin cycling, and that the increase in actin cycling contributes to cocaine-induced changes in spine morphology of medium

spiny neurons in the accumbens core.”
“The asialoglycoprotein receptor, which is abundantly and near exclusively expressed on hepatocytes, has received much attention in the design of non-viral hepatotropic DNA delivery systems. Thus, asialoglycoproteins and hexopyranosyl ligands have been coupled to DNA-binding cationic polymers PF-02341066 in vitro and liposomes in the assembly of complexes intended for uptake by liver parenchymal cells. The aim of the study was to construct a hepatocyte-targeted multimodular liposome-based transfecting complex, in which the biotinstreptavidin interaction provides the cohesive force between the ligand asialorosomucoid and the liposome bilayer, and to evaluate its transfection capabilities in the hepatocyte-derived human transformed cell line HepG2. Dibiotinylated asialoorosomucoid was attached to cationic liposomes constructed from 3 beta[N-(N',N'-dimethylaminopropane)-carbamoyl] cholesterol (Chol-T): dioleoylphosphatidylethanolamine: biotinylcholesterylformylhydrazide (MSB1) (48:50:2 mole ratio) through streptavidin interposition.

Comments are closed.